[發布]專業共聚物與納米複合材料仿真軟件PSim發布

發布日期:2013-5-11 17:00:24 來源: BTIT Group

PSim 專業共聚物與納米複合材料仿真軟件

1. PSim 1.0發布

201359日,美國Tech-X公司發布基於自洽場理論的介觀尺度共聚物與納米複合材料仿真軟件PSim軟件。http://www.txcorp.com/home/psim/psim-overview

What PSim is

PSim enables researchers to model complex block copolymer mixtures at the mesoscopic level critical to many nanoscience applications. PSim provides a flexible simulation tool for studying the mesoscale structure of complex polymeric materials by combining self-consistent field theory (SCFT) methods with high-performance computing.

Why PSim

Predicting the phase for a given copolymer system with a given confinement allows the tailoring of the soft material properties more efficiently than pure experimental studies.

2. PSim軟件特征

PSim supports

Ø  Fully flexible chain model

Ø  Neutral, dense polymer melts

Ø  Flory-type interactions

Ø  Pseudo-spectral solution methods

Ø  Hybrid-SCFT

Ø  Arbitrary confinement

PSim simulates

Ø  Multi-block Copolymer mixtures

Ø  Confined Copolymers

Ø  Nanocomposites

PSim constructure

PSim軟件分為PSimBasePSimPlus模塊。

PSimBaseMulti-block Copolymer Mixtures;

PSimPlusConfined Nanoparticle Composites.

2.1 PSimBase Features

Ø  Multi-block linear copolymers

Ø  Arbitrary branched copolymers

Ø  Mixtures of copolymers, homopolymers and solvent species

Ø  Advanced relaxation techniques: Includes spectral filtering and zone annealing

2.2 PSimPlus Features

Ø  All of the PSimBase features

Ø  SCFT simulations with boundaries: Study the effects of confinement and structured surfaces on BCP morphologies.

Ø  Nanoparticle mixtures: Study the effects of spherical nanoparticle inclusions on block copolymer structures of nanoparticle templating.

Ø  Specify arbitrary geometry for surfaces/confinement

Ø  Hybrid-SCFT for explicit nanoparticle composites

Ø  Specify Flory-type interactions for nanoparticles/surfaces

Ø  Patterned surface interactions

2.3 Advantages of PSim

Ø  Able to solve your largest problems (runs on large parallel clusters)

Ø  Flexible methods for specifying arbitrary copolymer connectivity (eg linear mulit-blocks, branched copolymers and multi-armed stars)

Ø  Includes advanced relaxation techniques: zone annealing and spectral filtering

Ø  Models mixtures of copolymers, homopolymers and solvents within the numerical SCFT theory.

2.4 PSim GUI

PSims built-in three-dimensional visualization capability, multi-platform availability (Linux, Mac OS X, and Windows), and examples will get you up and running quickly.

3. PSim案例

3.1 Overview

Density isosurfaces for phase-segregating 3D linear diblock.

Proctor & Gamblepredict how surfactants reduce surface tension at silicone-water interfaces by adjusting structure of the surfactant molecules in PSim simulation. This can aid in designing new detergent formulations.

Projected density values for phase-segregated linear ABA triblock. The total A monomer density is tracked separately from the contribution from one of the A endblocks.

Oak Ridge National Lab: Predict how degree of polymerization in branched copolymers affects structure/performance of membranes in polymer electrolyte fuel cells

                                                                                                            

 

2D block copolymer and nanoparticle mixture. The nanocomposite mixture is confined between parallel, flat surfaces. This simulations utilizes the hybrid-SCFT method in PolySwift++ for explicitly including the effects of embedded nanoparticles.

Univ. of Ohio at Akron: Predict how fullerene loading in a block copolymer nano-composite affects efficiency and charge separation characteristics for next-generation photovoltaic devices.

Monomer density plot for an ABC star-copolymer.

Intermediate morphology for a linear AB diblock. A slab ‘zone’ is moving through the simulation grid that simulates local heating. This zone-annealing technique can also be used to speed relaxation to the equilibrium structure much like in real experimental situations.

3D density isosurfaces for a linear diblock in cylindrical confinement. A cutaway view of the cylindrical confinement is shown as a brown isosurface.

Explore effects of structured interacting surfaces on coplymer morphology. This demonstrates the python function for specifying geometry.

3.2 PEM Fuel Cells

3.3 Block Copolymers

3.4 Nanoparticle Composites

A hybrid-SCFT algorithm (implemented in PSim) enables simulations of nanoparticle composites.

3.5 Substrate Channels

Arbitrary confinement example: substrate channels.

3.6 Publications relevant to PSim

Morphologies of ABC tri-block terpolymer melts containing poly(cyclohexadiene) : effects of conformational asymmetry” Kumar, R.; Sides, S.; Goswami, M.; Sumpter, B.; Hong, K.; Wu, X.; Russell, T.; Gido, S.; Misichronis, K.; Rangou, S.; Avgeropoulos, A.; Tsoukatos, T.; Hadjichristidis, N.; Beyer, F.; Mays, J. Langmuir, 29(6), pp 1995-2006 (2013).

Morphology diagrams for A2B copolymer melts: real-space self-consistent field theory’’ R. Kumar, Y. Li, S. W. Sides, J. W. Mays and B. G. Sumpter, Journal of Physics: Conference Series 402 (2012) 012042. doi:10.1088/1742-6596/402/1/012042.

Phase Morphology and Molecular Structure Correlations in Model Fullerene Polymer Nanocomposites. Bucknall, D. G.; Bernardo, G.; Shofner, M. L.; Deb, N.; Raghavan, D.; Sumpter, B. G.; Sides, S. W.; Huq, A.; Karim, A., Materials Science Forum, 2012, 714, 63-66.

Directed Assembly of Model Block Copolymer PCBM Blend System for Photovoltaic Applications G. Singh, M. M. Kulkarni, D. Smilgies, S. Sides, B. Berry, D. Raghavan, D.G. Bucknall, B. Sumpter and A. Karim MRS Proceedings (2012) 1390 : mrsf111390h1354

Ordering of Sphere Forming SISO Tetrablock Terpolymers on a Simple Hexagonal Lattice’’ J. Zhang, S. W. Sides and F. S. Bates, Macromolecules, 2012, 45 (1), pp 256– 265. DOI: 10.1021/ma202196c

C. Dyer, P. Driva, S.W. Sides, B.G. Sumpter, J. W. Mays, J. Chen, R. Kumar, M. Goswami and M. Dadmun, “Effect of macromolecular architecture on the morphology of polystyrene–polyisoprene block copolymers”, Macromolecules.

K. Misichronis, S. Rangou, E. Ashcraft, R. Kumar, M. Dadmun, B.G. Sumpter, N.E. Zafeiropoulos, J.W. Mays and A.T. Avgeropoulos, “Synthesis, characterization (molecular-morphological) and theoretical morphology predictions of linear triblock terpolymers containing poly(cyclohexadiene)”, Polymer.

4. PSim軟件用戶

²  Chemical Companies

Ø  Proctor & Gamble

Ø  Dow

²  Research Laboratories

Ø  Oak Ridge National Lab

Ø  Sandia National Lab

Ø  National Renewable Energy Lab

²  Academia

Ø  Ohio State University

Ø  Univ. of Ohio at Akron

5. Tech-X公司介紹

美國Tech-X公司由John R. Cary博士創立,總部設在美國科羅拉多州博爾德市,是專業的等離子技術軟件供應商。公司的產品和技術緊跟等離子體領域的最新科研成果,是該領域全球最大的商業化軟件技術公司。公司以技能的專業化和技術的創新性為最終追求,同時致力於創造能夠實現大規模計算以及更好理解物理過程的軟件產品,即在台式機到超級計算機各類計算機係統上,均能實現與等離子體物理、聚變、加速器技術相關的物理係統和過程的模擬,以增加對複雜物理現象的認識。公司軟件與技術在美國多個國家級實驗室得到應用,並承擔了能源、國防部門的多項課題。自澳門威尼斯人導航網址公司將其引進國內以來,眾多國內客戶對軟件表達了濃厚的興趣並取得成功應用。

Tech-X公司的產品主要包括電磁粒子仿真軟件VSim、電磁流體仿真軟件USim和專業共聚物與納米複合材料仿真軟件PSim

VSim是包含全電磁模型的粒子仿真軟件,是等離子體、微波與真空電子器件、脈衝功率與高電壓、加速器、放電等離子體等領域的尖端仿真工具。

USim軟件是支持等離子體、高超聲速流體、化學反應流體模擬的專業電磁流體仿真軟件,是求解高超聲速流體力學、高能密度物理、天體物理、電氣工程等領域複雜問題的高端工具。

PSim軟件是基於自洽場理論的介觀尺度共聚物與納米複合材料仿真軟件。

網站:www.fetishbbwblog.com  Email   info@fetishbbwblog.com